
Simplex Algorithm for Countable-state Discounted Markov

Decision Processes∗

Ilbin Lee Marina A. Epelman H. Edwin Romeijn Robert L. Smith

November 16, 2014

Abstract

We consider discounted Markov Decision Processes (MDPs) with countably-infinite state
spaces, finite action spaces, and unbounded rewards. Typical examples of such MDPs are
inventory management and queueing control problems in which there is no specific limit on the
size of inventory or queue. Existing solution methods obtain a sequence of policies that converges
to optimality in value but may not improve monotonically, i.e., a policy in the sequence may
be worse than preceding policies. Our proposed approach considers countably-infinite linear
programming (CILP) formulations of the MDPs (a CILP is defined as a linear program (LP)
with countably-infinite numbers of variables and constraints). Under standard assumptions for
analyzing MDPs with countably-infinite state spaces and unbounded rewards, we extend the
major theoretical extreme point and duality results to the resulting CILPs. Under an additional
technical assumption which is satisfied by several applications of interest, we present a simplex-
type algorithm that is implementable in the sense that each of its iterations requires only a
finite amount of data and computation. We show that the algorithm finds a sequence of policies
which improves monotonically and converges to optimality in value. Unlike existing simplex-type
algorithms for CILPs, our proposed algorithm solves a class of CILPs in which each constraint
may contain an infinite number of variables and each variable may appear in an infinite number
of constraints. A numerical illustration for inventory management problems is also presented.

1 Introduction

The class of Markov decision processes (MDPs) provides a popular framework which covers a
wide variety of sequential decision-making problems. An MDP is classified by its criterion being
optimized, its state and action space, whether the problem data is stationary, etc., and those
different settings are mostly motivated by applications. For example, in inventory management
and queueing control, often times there is no specific limit on the size of inventory or queue, and
such problems can be modeled by MDPs with countable state space.

We consider MDPs whose objective is to maximize expected total discounted reward, and that
have a countable state space, a finite action space, and unbounded immediate rewards. Specifically,
consider a dynamic system that evolves over discrete time periods. In time periods n = 0, 1, . . .,
a decision-maker observes the current state of the system s ∈ S, where the set of states S is
countably-infinite. The decision-maker then chooses an action a ∈ A, where the action set A is a
finite set. Given that action a is taken in state s, the system makes a transition to a next state

∗Submitted to Operations Research; preliminary version.

1

t ∈ S with probability p(t|s, a) and reward r(s, a, t) is obtained. Let r(s, a) denote the expected
reward incurred by choosing action a at state s, i.e., r(s, a) =

∑
t∈S p(t|s, a)r(s, a, t). A policy is

defined as a decision rule that dictates which action to execute and the rule may in general be
conditioned on current state, time, and the whole history of visited states and actions taken. The
goal is to find a policy that maximizes the expected total discounted reward, with discount factor
α ∈ (0, 1), over the infinite-horizon for any starting state. In this paper, we refer to this problem
as a countable-state MDP for short.

For a policy π, Vπ(s) denotes the expected total discounted reward obtained by executing π starting
from state s, and we call Vπ the value function of policy π. For s ∈ S, let V ?(s) denote the
supremum of Vπ(s) over all policies π; then V ? is the optimal value function. Thus, the goal of the
MDP problem can be rephrased as finding a policy whose value function coincides with the optimal
value function. For more precise definitions, see Section 2.1.

1.1 Motivation and Contribution

Countable-state MDPs were studied by many researchers, including [4, 10, 12, 21, 22, 23], with
predominant solution methods summarized as the three algorithms in [21, 22] and [23]. We will
review these in Section 1.2 in detail. Each of the three algorithms computes a sequence of real-
valued functions on S that converges to the optimal value function V ?. Also, for the algorithms in
[21] and [23], methods to obtain a sequence of policies whose value functions converge pointwise to
the optimal value function were provided as well. However, the value function of policies obtained
by these two methods may not improve in every iteration. In other words, a policy obtained in
a later iteration may be worse (for some starting states) than a previously obtained policy. In
practice, one can run those algorithms only for a finite time, obtaining a finite sequence of policies.
Upon termination, it should be determined which policy to execute. Without monotonicity of value
functions of obtained policies, the value functions of those policies should be exactly computed in
order to find the best one. However, computing the value function of even one policy takes an
infinite amount of computation for countable-state MDPs, and even if the policies are evaluated
approximately, it still requires a considerable amount of computation (in addition to the running
time of the algorithm). On the other hand, if the sequence of value functions of obtained policies is
guaranteed to be monotone, then the last obtained policy is always guaranteed to be the best one
so far. The key motivation of this paper is to develop an algorithm that finds a sequence of policies
whose value functions improve in every iteration and converge to the optimal value function. We
propose an algorithm that has both of the characteristics under the assumptions considered in
[12] to analyze countable-state MDPs with unbounded rewards (introduced in Section 2.1) and
an additional technical assumption (introduced at the end of Section 4.1), which are satisfied by
application examples of interest as we show in this paper.

Our algorithm is a simplex-type algorithm for solving a linear programming (LP) formulation of
countable-state MDPs. Solving an equivalent LP formulation is a popular solution method for
MDPs. It is well known that policy iteration, one of the popular solution methods for MDPs with
finite state space, can be viewed as the simplex method applied to an equivalent LP formulation of
the MDP. A recent result in [25] showed that for finite-state MDPs, simplex method with Dantzig’s
pivoting rule (for maximization, choosing a non-basic variable with the most positive reduced cost)
is strongly polynomial for a fixed discount factor, and the complexity bound is better than that of
the other solution methods.

2

For countable-state MDPs, the equivalent LP formulations have a countably-infinite number of
variables and a countably-infinite number of constraints. Such LPs are called countably-infinite
linear programs (CILPs). General CILPs are challenging to analyze or solve mainly because useful
theoretical properties of finite LPs (such as duality) fail to extend to general CILPs. We sum-
marize the challenges for general CILPs in Section 1.2. Due to these hurdles, there are only a
few algorithmic approaches to CILPs in the literature ([7, 8, 19]) (all of these are simplex-type
algorithms, i.e., they navigate through extreme points of the feasible region). In particular, for a
CILP formulation of non-stationary MDPs with finite state space, which can be considered to be a
subclass of countable-state MDPs, [8] recently provided duality results, characterization of extreme
points, and an implementable simplex algorithm that improves in every iteration and converges to
optimality.

However, classes of CILPs considered so far ([7, 8, 19]) have a special structure that each constraint
has only a finite number of variables and each variable appears only in a finite number of constraints.
In the CILP formulation of countable-state MDPs we present in Section 3, each constraint may have
an infinite number of variables and each variable may appear in an infinite number of constraints
(i.e., the coefficient matrix of the CILP can be “dense”) as we illustrate by Example 2. Another key
contribution of this paper is that we show that even without restrictions on positions of nonzeros
in the coefficient matrix, the dynamic programming structure in the coefficient matrix of the CILP
formulation of countable-state MDPs still enables us to establish the standard LP results and
develop a simplex-type algorithm.

1.2 Literature Review

In this section, we first review the existing solution methods for countable-state MDPs as discussed
in [21, 22, 23].

The algorithm suggested in [23] is an extension of value iteration to countable-state MDPs. In
general, value iteration computes a sequence of real-valued functions on S that converges to the
optimal value function. To remind the readers, value iteration for finite-state MDPs starts with a
function V 0 : S → R and for k = 1, 2, . . ., computes a function V k : S → R in iteration k by the
following recursion formula:

V k(s) , max
a∈A

{
r(s, a) + α

∑
t∈S

p(t|s, a)V k−1(t)

}
for s ∈ S. (1)

Extending this to countable-state MDPs requires an adjustment in order for each iteration to finish
in finite time. The value iteration for countable-state MDPs first selects a function u : S → R and
then, in iteration k, computes V k(s) by (1) only for s ≤ k and lets V k(s) = u(s) for s > k. In
[23], it was shown that V k converges pointwise to the optimal value function V ? and error bounds
on the approximations were provided. In iteration k, a policy πk : S → A (i.e., a stationary and
deterministic policy) is obtained by assigning the action that achieves the maximum in (1) to s ≤ k
and an arbitrary action to s > k. It was also shown in [23] that Vπk converges pointwise to V ? but
the convergence may not be monotone.

The solution method in [21] is an extension of policy iteration, another popular solution method
for finite-state MDPs. Recall that, given π0 : S → A, the kth iteration of policy iteration for
finite-state MDPs is as follows:

3

1. Obtain V k : S → R that satisfies

V k(s) = r(s, πk−1(s)) + α
∑
t∈S

p(t|s, πk−1(s))V k(t) for s ∈ S; (2)

2. Choose πk : S → A that satisfies

πk(s) ∈ arg max
a∈A

{
r(s, a) + α

∑
t∈S

p(t|s, a)V k(t)

}
for s ∈ S. (3)

Each iteration consists of computing the value function of the current (stationary and deterministic)
policy (Step 1) and obtaining a new policy based on the evaluation (Step 2). The extension of policy
iteration to countable state space is as follows: after selecting a function u : S → R, in iteration
k, it computes V k that satisfies (2) for s ≤ k and V k(s) = u(s) for s > k, and then finds πk that
satisfies (3) only for s ≤ k. It was shown in [21] that V k obtained by this method also converges
pointwise to V ? and error bounds on the approximations were provided. One can extend πk to the
entire state space S by assigning an arbitrary action to s > k; then Vπk converges pointwise to V ?

but again, the convergence may not be monotone.

Another method, proposed in [22], is to solve successively larger but finite-state approximations
of the original MDP to optimality. The real-valued functions on S obtained by this method were
also proven to converge pointwise to V ?. A sequence of policies covering S is also obtained by this
algorithm in a similar manner but pointwise convergence of their value functions was not established
in the paper.

It should be pointed out that the above three papers only considered the case where the reward
function is uniformly bounded. However, in the aforementioned applications of countable-state
MDPs, immediate reward typically goes to infinity as the inventory level or the number of cus-
tomers in queue goes to infinity, which suggests the need to consider countable-state MDPs with
unbounded immediate reward functions. For brevity, let us refer to a set of assumptions on transi-
tion probabilities and rewards as a setting in the following literature review. Under three different
settings with unbounded rewards, [9, 11, 20] studied properties of countable-state MDPs. In [24],
each of the three settings with unbounded rewards in [9, 11, 20] was equivalently transformed into a
bounded one. Therefore, the algorithms and results mentioned in previous paragraphs for bounded
case were extended to the three unbounded problems in [9, 11, 20]. Meanwhile, [4] extensively
reviewed conditions under which the extension of the value iteration in [23] converges to optimality
in value and studied its rate of convergence. The setting in [4] is more general than the settings
in [9, 11, 20] but one cannot check whether it holds for given transition probabilities and rewards
without solving the MDP since it includes an assumption on the optimal value function. In this
paper, we consider the setting in [12] (Section 6.10) for countable-state MDPs with unbounded
rewards (Assumptions A1, A2, and A3 in Section 2.1 of this paper). One can easily show that
this setting covers the three settings in [9, 11, 20]; it is a special case of the one in [4] but it is
checkable for given parameters without solving the MDP and has enough generality to cover many
applications of interest.

As mentioned in the previous section, an important contribution of this paper is that we developed
a simplex-type algorithm for a class of CILPs in which each constraint may contain an infinite
number of variables and each variable may appear in an infinite number of constraints. To put our
findings in perspective, let us review some of the difficulties in analyzing and solving general CILPs

4

(for more details, see [7, 8]). First, there is an example in which a CILP and its dual have a duality
gap ([15]). Also, there is a CILP that has an optimal solution but does not have an extreme point
optimal solution ([3]). Even for CILPs that have an extreme point optimal solution, extending
the simplex method is challenging. A pivot operation may require infinite computation, and hence
not be implementable ([3, 19]). Moreover, [7] provided an example of a CILP in which a strictly
improving sequence of extreme points may not converge in value to optimality, which indicates that
proving convergence to optimality requires careful considerations. However, some of LP results can
be extended by considering more structured CILPs ([8, 14, 15]) or finding appropriate sequence
spaces ([6]).

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we formally define countable-state
MDPs, introduce assumptions on problem parameters, give two application examples, and review
some results established in literature. In Section 3, we introduce primal and dual CILP formula-
tions for countable-state MDPs, prove strong duality, define complementary slackness, and prove
the equivalence of complementary slackness and optimality. Then, in Section 4, we introduce an
implementable simplex-type algorithm solving the dual CILP. We show that the algorithm obtains
a sequence of policies whose value functions strictly improve in every iteration and converge to the
optimal value function. Section 5 illustrates computational behavior of the algorithm for inventory
management problem instances and Section 6 concludes the paper with discussion and some future
research directions.

2 Countable-State MDP

2.1 Problem Formulation

We continue to use the notation introduced in the previous section: countably-infinite state set S,
finite action set A, transition probabilities p(t|s, a) and immediate reward r(s, a, t) (along with the
expected immediate reward r(s, a)) for s, t ∈ S and a ∈ A, and discount factor 0 < α < 1. We let
S = {1, 2, . . .} and A = {1, 2, . . . , A} unless otherwise specified.

A policy π is a sequence π = {π1, π2, . . .} of probability distributions πn(·|hn) over the action set A,
where hn = (s0, a0, s1, a2, . . . , an−1, sn) is the whole observed history at the beginning of period n.
A policy π is called Markov if the distributions πn depend only on the current state and time, i.e.,
πn(·|hn) = πn(·|sn). A Markov policy π is called stationary if the distributions πn do not depend
on time n, i.e., πn(·|s) = πm(·|s) for all s ∈ S and time periods m and n. A policy π is said to
be deterministic if each distribution πn(·|hn) is concentrated on one action. For a stationary and
deterministic policy π and a state s, π(s) denotes the action chosen by π at s. Let Π,ΠM ,ΠMD,ΠS ,
and ΠSD denote the set of all policies, Markov policies, Markov deterministic policies, stationary
policies, and stationary deterministic policies, respectively.

Given an initial state distribution β, each policy π induces a probability distribution P βπ on se-
quences {(sn, an)}∞n=0, where (sn, an) ∈ S ×A for n = 0, 1, . . ., and defines a state process {Sn}∞n=0

and an action process {An}∞n=0. We denote by Eβπ the corresponding expectation operator. The

5

expected total discounted reward of a policy π with initial state distribution β is defined as

Vπ(β) , Eβπ

[∞∑
n=0

αnr(Sn, An)

]
. (4)

We call Vπ(β) the value of policy π with initial state distribution β, or simply the value of policy
π whenever it is clear which initial state distribution is used. For those initial state distributions
concentrated on one state s, we use a slight abuse of notation in (4): Vπ(s) where β(s) = 1 for a
state s. Vπ : S → R is called the value function of policy π.

A policy π? is said to be optimal for initial state distribution β if Vπ?(β) = V ?(β) , supπ∈Π Vπ(β).
A policy π? is said to be optimal for initial state s if Vπ?(s) = V ?(s) , supπ∈Π Vπ(s). We call
V ? : S → R the optimal value function of the MDP or simply the optimal value function. A policy
π? is defined to be optimal if Vπ?(s) = V ?(s) for all s ∈ S, i.e., if it is optimal for any initial state.
The goal of the decision maker is to find an optimal policy.

Let us define additional notation that will come in handy in the rest of the paper. Given a
policy π and states s, t ∈ S, Pnπ (t|s) denotes the probability of reaching state t after n transitions
starting from state s when policy π is applied, with P 0

π (t|s) , 1{t = s}. Pnπ denotes the transition
probability matrix of policy π for n transitions with both rows and columns indexed by states.
P 0
π , defined similarly, is denoted as I. For simplicity, we denote P 1

π (t|s) and P 1
π as Pπ(t|s) and Pπ,

respectively. For a stationary policy σ (in this paper, notation σ is used to emphasize the choice
of a stationary policy) and a state s ∈ S, rσ(s) denotes r(s, σ(s)), the expected immediate reward
at s when σ is applied, and rσ denotes the reward vector indexed by states.

Throughout the paper, we will make the following assumptions, which enable us to analyze countable-
state MDPs with unbounded rewards:

Assumption (cf. Assumptions 6.10.1 and 6.10.2 of [12]) There exists a positive real-valued
function w on S satisfying the following:

A1 |r(s, a)| ≤ w(s) for all a ∈ A and s ∈ S;

A2 There exists κ, 0 ≤ κ <∞, for which

∞∑
t=1

p(t|s, a)w(t) ≤ κw(s)

for all a ∈ A and s ∈ S;

A3 There exists λ, 0 ≤ λ < 1, and a positive integer J such that

αJ
∞∑
t=1

P Jπ (t|s)w(t) ≤ λw(s)

for all π ∈ ΠMD.

Using the infinite matrix and infinite vector notation, the above three assumptions can be written
as: A1 |rσ| ≤ w for all σ ∈ ΠSD, A2 Pσw ≤ κw for all σ ∈ ΠSD, and A3 αJP Jπ w ≤ λw for
all π ∈ ΠMD, where the inequalities are component-wise. We can easily show that the above
assumptions imply that |rσ| ≤ w and Pσw ≤ κw for all σ ∈ ΠS , and αJP Jπ w ≤ λw for all π ∈ ΠM ,
i.e., they also hold for the corresponding class of randomized policies.

6

Assumption 1 tells us that the absolute value of the reward function is bounded by the function
w. In other words, the function w provides a “scale” of reward that can be obtained in each
state. Assumption 2 can be interpreted as that the transition probabilities prevent the expected
scale of immediate reward after one transition from being larger than the scale in the current state
(multiplied by κ). Assumption 3 can be interpreted similarly, but for J transitions. However, note
that λ is strictly less than one, which is important because λ will play a role similar to that of the
discount factor α in our following analysis.

2.2 Examples

We give two examples of countable-state MDPs with unbounded costs that satisfy Assumptions
A1, A2, and A3.

Example 1 (Example 6.10.2 in [12]) Consider an infinite-horizon inventory management prob-
lem with a single product and unlimited inventory capacity where the objective is to maximize the
expected total discounted profit. Let S = {0, 1, . . .}, A = {0, 1, . . . ,M}, and

p(t|s, a) =

0 t > s+ a

ps+a−t s+ a ≥ t > 0

qs+a t = 0,

where pk denotes the probability of demand of k units in any period, and qk =
∑∞

j=k pj denotes the
probability of demand of at least k units in any period. For s ∈ S and a ∈ A, the reward r(s, a) is
given as

r(s, a) = F (s+ a)−O(a)− h · (s+ a),

where

F (s+ a) =
s+a−1∑
j=0

bjpj + b(s+ a)qs+a,

with b > 0 representing the per-unit price, O(a) = K + ca for a > 0 and O(0) = 0 representing the
ordering cost, and h > 0 representing the cost of storing one unit of product for one period. It is
reasonable to assume

∑∞
k=0 kpk <∞, i.e., the expected demand is finite. Then,

|r(s, a)| ≤ b(s+M) +K + cM + h(s+M) = K +M(b+ c+ h) + (b+ h)s , C +Ds

by letting C , K +M(b+ c+h) and D , b+h. Let w(s) , C +Ds so that A1 holds. Since

∞∑
t=0

p(t|s, a)w(t) =
s+a∑
t=1

ps+a−t · w(t) + qs+a · w(0) =
s+a−1∑
t=0

pt · w(s+ a− t) + qs+a · w(0)

= C +D
s+a−1∑
t=0

(s+ a− t)pt ≤ C +D(s+ a) ≤ w(s) +DM,

by Proposition 6.10.5(a) in [12], A2 and A3 are also satisfied.

Example 2 (Generalized flow and service control) This example is a generalization of the
flow and service rate control problem in [2]. Consider a discrete-time single-server queue with an
infinite buffer. State is defined as the number of customers in the queue at the beginning of a period,

7

so S = {0, 1, . . .}. Let A1 and A2 be finite sets of nonnegative numbers and let A = A1×A2. If the
decision-maker chooses (a1, a2) ∈ A1 ×A2 in a period, then the number of arrivals in the period is
a Poisson random variable with mean a1 and the number of served (thus, leaving) customers in the
period is the minimum of a Poisson random variable with mean a2 and the number of customers
in the system at the beginning of the period plus the number of arrivals in the period. (That is,
we assume that order of the events in a period is: the decision-maker observes the current state
and chooses two numbers a1 ∈ A1 and a2 ∈ A2, arrivals occur, and then services are provided and
served customers leave.) For s ∈ S, a = (a1, a2) ∈ A, the immediate reward is

r(s, a) = −cs− d1(a1)− d2(a2),

where c is a positive constant, d1(·) is the flow control cost function, and d2(·) is the service control
cost function. The reward is linear in s, which is justified by the well-known Little’s Law.

In the flow and service control problem in [2], it was assumed that in a period, at most one customer
arrives and at most one customer leaves the system, which no longer holds in this example.

Let C , c and D , maxa1∈A1 |d1(a1)| + maxa2∈A2 |d2(a2)|. Then A1 is satisfied with w(s) ,
Cs+D.

In addition,

∑
t∈S

p(t|s, a)w(t) = D + C

∞∑
t=0

p(t|s, a)t = D + C

[
s−1∑
t=0

p(t|s, a)t+

∞∑
u=0

p(s+ u|s, a)(s+ u)

]

≤ D + Cs+
∞∑
u=0

p(s+ u|s, a)u ≤ w(s) +
∞∑
u=0

e−a
1
max(a1

max)u

u!
u = w(s) + Ca1

max,

where the second inequality is obtained by considering maximum arrival rate a1
max = maxA1 and

zero service rate. Therefore, by Proposition 6.10.5(a) in [12], A2 and A3 are satisfied.

Parts (b) and (c) of Proposition 6.10.5 in [12] provide two other sufficient conditions to satisfy A2
and A3.

2.3 Background

We conclude this section by reviewing some technical preliminaries that were established in the
literature and will be used in this paper.

By the following theorem, we can limit our attention to policies that are stationary and determin-
istic.

Theorem 2.1 (cf. Theorem 6.10.4 of [12]) Countable-state MDPs under Assumptions A1, A2,
and A3 satisfy the following.
(1) There exists an optimal policy that is stationary and deterministic.
(2) The optimal value function V ? is the unique solution of

y(s) = max
a∈A

{
r(s, a) + α

∞∑
t=1

p(t|s, a)y(t)

}
for s ∈ S.

Moreover, the actions that achieve the above maximum form a stationary and deterministic optimal
policy.

8

In particular, for any stationary deterministic policy σ, Vσ equals the optimal value function of a
new MDP obtained by allowing only one action σ(s) for s ∈ S, and thus, Vσ is the unique solution
of

y(s) = r(s, σ(s)) + α

∞∑
t=1

p(t|s, σ(s))y(t) for s ∈ S,

or y = rσ + αPσy in the infinite vector and matrix notation.

Define

L ,

{
J

1−λ if ακ = 1
1

1−λ
1−(ακ)J

1−(ακ) otherwise.

It has been shown that the value function of any Markov policy is bounded by Lw:

Proposition 2.2 (cf. Proposition 6.10.1 of [12]) If Assumptions A1, A2, and A3 are satisfied,

|Vπ(s)| ≤ Lw(s) for any s ∈ S and π ∈ ΠM . (5)

In the rest of this subsection, we review some real analysis results that will be used in this paper
for exchanging two infinite sums, an infinite sum and an expectation, or a limit and an expecta-
tion.

Proposition 2.3 (cf. Tonelli’s theorem on page 309 of [17]) Given a double sequence {aij}
for i = 1, 2, . . ., j = 1, 2, . . ., if aij ≥ 0 for all i and j, then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij .

Proposition 2.4 (Theorem 8.3 in [18]) Given a double sequence {aij} for i = 1, 2, . . ., j =
1, 2, . . ., if

∑∞
i=1

∑∞
j=1 |aij | converges, then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij <∞.

This proposition is a special case of Fubini-Tonelli theorem, which is obtained by combining Fubini’s
theorem (see Theorem 19 on page 307 of [17]) and Tonelli’s theorem. We will also use the following
special case of monotone convergence theorem (MCT).

Proposition 2.5 (Series version of monotone convergence theorem, Corollary 5.3.1 of [13])
If Xi are nonnegative random variables for i = 1, 2, . . ., then

E

[∞∑
i=1

Xi

]
=

∞∑
i=1

E[Xi].

Proposition 2.6 (Dominated convergence theorem, Theorem 5.3.3 of [13]) If a sequence
of random variables {Xi}∞i=1 converges to a random variable X and there exists a dominating
random variable Z such that |Xi| ≤ Z for i = 1, 2, . . . and E[|Z|] <∞, then

E[Xi]→ E[X].

9

3 CILP Formulations

In this section, we introduce primal and dual CILP formulations of countable-state discounted
MDPs. We start with a straightforward result which was used in [12] and [16] without being
explicitly stated.

Lemma 3.1 A policy is optimal if and only if it is optimal for an initial state distribution that has
a positive probability at every state.

Proof: For a policy π and an initial state distribution β, observe that

Vπ(β) = Eβπ

[∞∑
n=0

αnr(Sn, An)

]
=

∞∑
s=1

β(s)Eπs

[∞∑
n=0

αnr(Sn, An)

]
=

∞∑
s=1

β(s)Vπ(s).

Since Vπ(s) ≤ V ?(s) for any s ∈ S, and β(s) > 0 for any s ∈ S, a policy π maximizes Vπ(β) if and
only if it maximizes Vπ(s) for each state s, and thus, the equivalency is proven. �

Using this lemma, we equivalently consider finding an optimal policy for a fixed initial state distri-
bution that satisfies

β(s) > 0 for all s ∈ S. (6)

Additionally, we require that β satisfies

βTw =

∞∑
s=1

β(s)w(s) <∞. (7)

(7) will help us show that a variety of infinite series we consider in this paper converge. Note that
β is not a given problem parameter and that there are many functional forms of w that allow us to
choose β satisfying (6) and (7). For example, if w ∈ O(sm) for some positive number m (in other
words, w is asymptotically dominated by a polynomial in s), then we can easily find β satisfying
the conditions by modifying an exponential function appropriately.

Now we introduce a CILP formulation of a countable-state MDP. Let ‖y‖w , sups∈S
|y(s)|
w(s) for

y ∈ R∞ and Yw , {y ∈ R∞ : ‖y‖w <∞}. Consider the following CILP:

(P) min g(y) =

∞∑
s=1

β(s)y(s) (8)

s.t. y(s)− α
∞∑
t=1

p(t|s, a)y(t) ≥ r(s, a) for s ∈ S and a ∈ A (9)

y ∈ Yw. (10)

A CILP formulation consisting of (8) and (9) was introduced in Chapter 2.5 of [16] for MDPs
with uniformly bounded rewards. By adding constraint (10), one can apply essentially the same
arguments to countable-state MDPs being considered in this paper (i.e., ones with unbounded
rewards but satisfying Assumptions A1, A2, and A3) to show that the optimal value function
V ? is equal to the unique optimal solution of (P). (Chapter 12.3 of [5] introduced a similar CILP
formulation for a more general class of MDPs, but for the average reward criterion. Additionally, in
Chapter 8.8 of [2], Altman derived a similar CILP formulation for constrained MDPs, with regular

10

MDPs a special case. However, assumptions used in the latter are quite different from ours and it
is not known either if his set of assumptions implies ours or vice versa.)

A few remarks about (P) are in order. Note that for any y ∈ Yw, the objective function value
is always finite because of (7). Also, the infinite sum in each constraint,

∑∞
t=1 p(t|s, a)y(t) for

s ∈ S and a ∈ A, can be shown to be finite for any y ∈ Yw by using Assumption A2. Also,
under Assumptions A1, A2, and A3, value functions of all Markov policies belong to Yw due to
Proposition 2.2, so (10) does not exclude any solution of interest. Since, for any optimal policy
π?,

V ?(β) = Vπ?(β) =
∞∑
s=1

β(s)Vπ?(s) =
∞∑
s=1

β(s)V ?(s), (11)

the optimal value of (P) equals V ?(β). Lastly, we note that Yw is a Banach space, so (P) is a problem
of minimization of a linear function in a Banach space while satisfying linear inequalities.

We also consider the following CILP formulation of a countable-state MDP:

(D) max f(x) =
∞∑
s=1

A∑
a=1

r(s, a)x(s, a) (12)

s.t.
A∑
a=1

x(s, a)− α
∞∑
t=1

A∑
a=1

p(s|t, a)x(t, a) = β(s) for s ∈ S (13)

x ≥ 0, x ∈ l1,

where l1 is the space of absolutely summable sequences: x ∈ l1 means
∑∞

s=1

∑A
a=1 |x(s, a)| <

∞.

Derivations of (D) can be found in the literature even for more general classes of MDPs (e.g.,
see Chapter 8 of [2] or Chapter 12 of [5]). However, we provide a high-level derivation of (D) in
Appendix A, in part because it also gives a proof of strong duality between (P) and (D) (Theo-
rem 3.3); due to this relationship, we will refer to (P) as the primal problem, and (D) — as the
dual problem. Briefly, (D) is derived by a convex analytic approach which considers the MDP as
a convex optimization problem maximizing a linear functional over the convex set of occupancy
measures. (An occupancy measure corresponding to a policy is the total expected discounted time
spent in different state-action pairs under the policy; for a precise definition, see Appendix A.) It
is well known that F , which denotes the set of feasible solutions to (D), coincides with the set of
occupancy measures of stationary policies. For any stationary policy σ and its occupancy measure
x ∈ F , Vσ(β) is equal to the objective function value of (D) at x. An optimal stationary policy
(which is known to be an optimal policy) can therefore be obtained from an optimal solution to
(D) by computing the corresponding stationary policy (for more details, see Appendix A).

The following visualization of constraint (13) will help readers understand the structure of (D).
Using infinite matrix and vector notation, constraint (13) can be written as

[M1|M2| . . . |M s| . . .]x = β. (14)

Here, for s ∈ S, M s is an∞×A matrix whose rows are indexed by states and M s = Es−αP s, where
each column of Es is the unit vector es, and the ath column of P s is the probability distribution
p(·|s, a).1

1Note that the rows of P s are indexed by next states. Meanwhile, given a stationary deterministic policy σ, the
rows of Pσ are indexed by current states and its columns are indexed by next states.

11

Remark 3.2 Let us re-visit Example 2. For any state s, for any action a = (a1, a2) such that
a1 > 0, transition to any state t ≥ s has a positive probability. That is, the ath column of P s has
an infinite number of positive entries. On the other hand, any state s can be reached by a transition
from any state t ≥ s by an action a = (a1, a2) such that a2 > 0. That is, for any t ≥ s, the entry
of P t at the sth row and the ath column is positive. Consequently, in the CILP (D) for Example
2, there are variables that appear in an infinite number of constraints (unless A1 = {0}) and each
constraint has an infinite number of variables (unless A2 = {0}).

The following strong duality theorem is proven in Appendix A.

Theorem 3.3 Strong duality holds between (P) and (D), i.e., g(y∗) = f(x∗), where y∗ and x∗ are
optimal solutions of (P) and (D), respectively.

Note that (D) has only equality constraints and non-negativity constraints, and thus can be said to
be in standard form. The main goal of this paper is to develop a simplex-type algorithm that solves
(D). A simplex-type algorithm is expected to move along an edge between two adjacent extreme
points, improving the objective function value at every iteration, and converge to an extreme point
optimal solution. The following characterization of extreme points of F is also well known in
literature (e.g., Theorem 11.3 of [5]).

Theorem 3.4 A feasible solution x of (D) is an extreme point of F if and only if for any s ∈ S,
there exists a(s) ∈ A such that x(s, a(s)) > 0 and x(s, b) = 0 for all b 6= a(s). That is, the extreme
points of F correspond to stationary deterministic policies.

Therefore, it is natural to define basic feasible solution in the following way.

Definition 3.5 A feasible solution x to (D) is defined to be a basic feasible solution of (D) if for
any s ∈ S, there exists a(s) ∈ A such that x(s, a(s)) > 0 and x(s, b) = 0 for all b 6= a(s).

Note that a basic feasible solution is determined by choosing one column from each block matrix
M s in (14) for s ∈ S. For a basic feasible solution x and for s ∈ S, the unique action a(s) that
satisfies x(s, a(s)) > 0 is called a basic action of x at state s. Basic actions of x naturally define a
stationary deterministic policy, say, σ. Recall that F is the set of occupancy measures of stationary
policies; moreover, the set of extreme points of F coincides with the set of occupancy measures of
stationary deterministic policies. Thus, conversely, the extreme point x is the occupancy measure
of the stationary deterministic policy σ.

The next theorem follows immediately, based on the existence of an optimal policy that is stationary
and deterministic and the correspondence between stationary deterministic policies and extreme
points (Theorem 11.3 of [5]).

Theorem 3.6 (D) has an extreme point optimal solution.

Next, we define complementary slackness between solutions of (P) and (D), and prove its equivalence
to optimality.

Definition 3.7 (Complementary slackness) Suppose x ∈ F and y ∈ Yw. x and y are said to satisfy
complementary slackness (or be complementary) if

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
= 0 for all s ∈ S, a ∈ A. (15)

Theorem 3.8 (Complementary slackness sufficiency) Suppose x ∈ F and y ∈ Yw are complemen-
tary. Then f(x) = g(y), and if y is feasible to (P), then y and x are optimal to (P) and (D),

12

respectively.

Proof: In Appendix B.

Theorem 3.9 (Complementary slackness necessity) If y and x are optimal to (P) and (D), re-
spectively, then they are complementary.

Proof: In Appendix C.

Given a basic feasible solution x, let σ be the corresponding stationary deterministic policy. By
Theorem 2.1(2) and the definition of complementary slackness, a y ∈ Yw is complementary with x
if and only if y is the value function of σ. Since the value function of a policy is unique, for any
basic feasible solution x, there exists a unique y ∈ Yw that is complementary with x, and moreover,
y satisfies |y| ≤ Lw by Proposition 2.2.

Recently in [6], it was shown that for general CILPs, weak duality and complementary slackness
could be established by choosing appropriate sequence spaces for primal and dual, and the result
was applied to CILP formulations of countable-state MDPs with bounded rewards. In the paper,
one of the conditions for the choice of sequence space is that the objective function should converge
for any sequence in the sequence space. However, in (D), the sequence space l1 does not guarantee
convergence of the objective function (but the objective function converges for any feasible solution
of (D) as shown in Appendix A). Thus, for countable-state MDPs with unbounded rewards being
considered in this paper, applying the choice of sequence spaces in [6] would yield a different CILP
formulation from (D), in which the feasible region may not coincide the set of occupancy measures
of stationary policies.

We conclude this section with the next lemma which will be useful in later sections.

Lemma 3.10 Any x ∈ F satisfies

∞∑
s=1

A∑
a=1

x(s, a) =
1

1− α
.

Proof: In Appendix D.

4 Simplex Algorithm

To devise a simplex-type algorithm for (D), let us recall how the simplex method for finite LPs works
(in case of maximization). It starts with an initial basic feasible solution, and in each iteration,
computes reduced costs of nonbasic variables, chooses a nonbasic variable with a positive reduced
cost, and then replaces a basic variable with this nonbasic variable to move to an adjacent basic
feasible solution (this step is called a pivot operation). The difficulties in replicating this for general
CILPs are summarized in [7, 8]: 1) for a given solution, checking feasibility may require infinite data
and computation, 2) it generally requires infinite memory to store a solution, 3) there are an infinite
number of nonbasic variables to consider for pivot operation, 4) computing reduced cost of even
one nonbasic variable may require infinite data and computation. In addition to these difficulties
in implementation, [7] provided an example of a CILP in which a strictly improving sequence of
adjacent extreme points may not converge in value to optimality. Therefore, an implementable
simplex algorithm for (D) should store each iterate in finite memory, and approximate reduced

13

costs of only a finite number of nonbasic variables using only finite computation and data in every
iteration. We should also ensure that the algorithm improves in every iteration and converges to
optimality despite the above restrictions.

In [8], a simplex algorithm for non-stationary MDPs with finite state space that satisfies all of
the requirements was introduced. Here we introduce a simplex algorithm that satisfies all of the
requirements for a larger class of MDPs, namely, countable-state MDPs.

4.1 Approximating Reduced Costs

In this section we describe how we approximate reduced costs and prove an error bound for the
approximation. Let x be a basic feasible solution to (D) and let y ∈ Y be its complementary
solution. We first define reduced costs.

Definition 4.1 Given a basic feasible solution x and the corresponding complementary solution y,
reduced cost γ(s, a) of state-action pair (s, a) ∈ S × A is defined as negative of the slack in the
corresponding constraint in (P):

γ(s, a) , r(s, a) + α
∞∑
t=1

p(t|s, a)y(t)− y(s). (16)

For a state-action pair (s, a) such that x(s, a) > 0, the reduced cost γ(s, a) is zero by complemen-
tarity. If γ(s, a) ≤ 0 for all (s, a) ∈ S ×A, it means that y is feasible to (P), and thus, x is optimal
to (D) by Theorem 3.8.

Let σ be the stationary deterministic policy corresponding to x. Fix a state s and an action a 6= σ(s)
and consider a stationary deterministic policy τ obtained from σ by changing the basic action at
state s to a. We call this procedure for obtaining τ from σ a pivot operation. Let z be the basic
feasible solution corresponding to τ . The next proposition shows the relation between the change
in objective function value made by this pivot operation and the reduced cost γ(s, a).

Proposition 4.2 In the aforementioned pivot operation, the difference in objective function values
of x and z is given by

f(z)− f(x) = γ(s, a)
∞∑
t=1

β(t)
∞∑
n=0

αnPnτ (s|t).

If the reduced cost γ(s, a) is positive, then the objective function strictly increases after the pivot
operation, by at least β(s)γ(s, a).

Proof: First, note that we can easily show that the infinite sum on the right hand side is finite
because probabilities are less than or equal to one. Let y and v be the complementary solutions of x
and z, respectively. Then, we have y = rσ+αPσy and v = rτ +αPτv. Thus, v−y = rτ +αPτv−y =
rτ + αPτ (v − y) + αPτy − y where the last equality follows because each entry of Pτv and Pτy is
finite (since |v| and |y| are bounded by Lw and each entry of Pτw is finite by Assumption A2). By
Theorem C.2 in [12], (I − αPτ)−1 exists for any stationary policy τ and we have2

(I − αPτ)−1 , I + αPτ + α2P 2
τ +

2Because αPτ is a bounded linear operator on Yw equipped with the norm ‖ · ‖w and the spectral radius of αPτ
is strictly less than one, the conditions of the theorem is satisfied.

14

Therefore, we have v− y = (I−αPτ)−1(rτ +αPτy− y). Entries of the infinite vector rτ +αPτy− y
are

(rτ + αPτy − y)(t) = r(t, τ(t)) + α
∞∑
t′=1

p(t′|t, τ(t))y(t′)− y(t) =

{
γ(s, a) if t = s

0 otherwise.

Therefore,

f(z)− f(x) = βT v − βT y = βT (v − y) = βT (I − αPτ)−1(rτ + αPτy − y)

= γ(s, a)

∞∑
t=1

β(t)

∞∑
n=0

αnPnτ (s|t),

establishing the first result. Because

∞∑
t=1

β(t)

∞∑
n=0

αnPnτ (s|t) ≥ β(s)P 0
τ (s|s) = β(s) > 0,

the second claim is also proven. �

Computing the reduced cost of even one state-action pair requires computing y. Recall that y is
the value function of the policy σ. Computing y requires an infinite amount of computation and
an infinite amount of data, no matter how it is computed, either by computing the infinite sum (4)
or solving the infinite system of equations y = rσ + αPσy.

For a given policy σ, we consider approximating the complementary solution y by solving the
following N -state truncation of the infinite system of equations y = rσ +αPσy. Let N be a positive
integer. The approximate complementary solution, which we denote as yN , is defined to be the
solution of the following finite system of equations:

yN (s) = rσ(s) + α
N∑
t=1

Pσ(t|s)yN (t) for s = 1, . . . , N. (17)

Note that yN is the value function of policy σ for a new MDP obtained by replacing states greater
than N by an absorbing state in which no reward is earned, and thus, yN is an approximation of
y obtained from the N -state truncation of the original MDP. The next lemma provides an error
bound for the approximate complementary solution.

Lemma 4.3 For any positive integer N , the approximate complementary solution yN satisfies

|yN (s)− y(s)| ≤ L
∑
t>N

∞∑
n=1

αnPnσ (t|s)w(t) for s = 1, . . . , N.

The error bound on the right hand side converges to zero as N → ∞. Therefore, yN converges
pointwise to y as N →∞.

Proof: In Appendix E.

Using the approximate complementary solution, we define approximate reduced costs of nonbasic
variables that belong to the N -state truncation:

γN (s, a) , r(s, a) + α
N∑
t=1

p(t|s, a)yN (t)− yN (s) for s = 1, . . . , N, a ∈ A. (18)

15

Note that γN (s, a) is an approximation of reduced cost γ(s, a) computed by using yN in place of
y. The next lemma provides an error bound on the approximate reduced cost.

Lemma 4.4 For any positive integer N , the approximate reduced cost γN satisfies

|γN (s, a)− γ(s, a)| ≤ δ(σ, s, a,N) for s = 1, . . . , N, a ∈ A,

where we define

δ(σ, s, a,N) , L
∑
t>N

∞∑
n=1

αnPnσ (t|s)w(t)+αL
N∑
t=1

p(t|s, a)
∑
t′>N

∞∑
n=1

αnPnσ (t′|t)w(t′)+αL
∑
t>N

p(t|s, a)w(t).

(19)

Proof: By Lemma 4.3 and (5), for any s ≤ N and a ∈ A,

|γN (s, a)− γ(s, a)| ≤ α
N∑
t=1

p(t|s, a)|yN (t)− y(t)|+ |yN (s)− y(s)|+ α
∑
t>N

p(t|s, a)|y(t)|

≤ αL
N∑
t=1

p(t|s, a)
∑
t′>N

∞∑
n=1

αnPnσ (t′|t)w(t′) + L
∑
t>N

∞∑
n=1

αnPnσ (t|s)w(t) + αL
∑
t>N

p(t|s, a)w(t)

= δ(σ, s, a,N),

which proves the lemma. �

By using Assumptions A2 and A3 and arguments similar to those in Appendix E, it is not hard to
prove the following proposition about δ(σ, s, a,N).

Proposition 4.5 For any positive integer N and for σ ∈ ΠSD, s = 1, . . . , N , and a ∈ A,

δ(σ, s, a,N) ≤ L(L+ ακL+ ακ)w(s), (20)

and for any σ ∈ ΠSD, s = 1, . . . , N , and a ∈ A,

δ(σ, s, a,N)→ 0 as N →∞. (21)

Thus, by this proposition and Lemma 4.4, we have γN (s, a) → γ(s, a) as N → ∞ for any state-
action pair (s, a).

To design a convergent simplex-like algorithm for solving (D), we need to assume the existence of
a uniform (policy independent) upper bound on δ(σ, s, a,N), i.e., δ̄(s, a,N) ≥ δ(σ, s, a,N) for all
σ ∈ ΠSD, positive integer N , s ≤ N , and a ∈ A, such that

δ̄(s, a,N)→ 0 as N →∞ for any (s, a). (22)

Additionally, for the algorithm to be implementable, we require δ̄(s, a,N) to be computable in
finite time, using finite data. In Section 4.4, we show how such an upper bound δ̄(s, a,N) can be
computed for Examples 1 and 2.

16

4.2 Simplex Algorithm

Our simplex algorithm finds a sequence of stationary deterministic policies whose value functions
strictly improve in every iteration and converge to the optimal value function. Let σk denote the
stationary deterministic policy our algorithm finds in iteration k. Let xk denote the corresponding
basic feasible solution of (D) and yk denote the complementary solution.

The intuition behind the algorithm can be described as follows. If σk is not optimal, yk is not feasible
to (P), and thus, there is at least one nonbasic variable (state-action pair) whose reduced cost is
positive. To identify such a variable with finite computation, in each iteration we consider N -state
truncations of the MDP, increasing N as necessary. As N increases, the variable’s approximate
reduced cost approaches its exact value, and for sufficiently large N becomes sufficiently large
to deduce (by Lemma 4.4) that the (exact) reduced cost of the variable is positive. Moreover,
in choosing a variable for the pivot operation, the algorithm selects a nonbasic variable that not
only has a positive reduced cost, but also has the largest approximate reduced cost (weighted by
β) among all nonbasic variables in the N-state truncation; this choice is similar to the Dantzig
pivoting rule for finite LPs. Choosing a nonbasic variable with a positive reduced cost ensures
strict improvement, and choosing one with the largest weighted approximate reduced cost enables
us to prove convergence to optimality. (As demonstrated by a counter-example in [7], an arbitrary
sequence of improving pivot operations may lead to convergence to a suboptimal value.) A unique
feature of our algorithm is that in each iteration it adjusts N , the size of finite-state truncation,
dynamically until a condition for performing a pivot operation is satisfied, whereas existing solution
methods for countable-state MDPs increase the size by one in every iteration.

An implementable simplex algorithm for countable-state MDPs

1. Initialize: Set iteration counter k = 1. Fix basic actions σ1(s) ∈ A for s ∈ S.3

2. Find a nonbasic variable with the most positive approximate reduced cost:

(a) Set N := 1 and set N(k) :=∞.

(b) Compute the approximate complementary solution, yk,N (s) for s = 1, . . . , N by solving
(17).

(c) Compute the approximate reduced costs, γk,N (s, a) for s = 1, . . . , N, a ∈ A by (18).

(d) Find the nonbasic variable achieving the largest approximate nonbasic reduced cost
weighted by β:

(sk,N , ak,N) = arg max
(s,a)

β(s)γk,N (s, a). (23)

(e) If γk,N (sk,N , ak,N) > δ̄(sk,N , ak,N , N), set N(k) = N , (sk, ak) = (sk,N , ak,N), and
σk+1(sk) = ak, σk+1(s) = σk(s) for s 6= sk, and go to Step 3; else set N := N + 1
and go to Step 2(b).

3. Set k = k + 1 and go to Step 2.

3Note that we can select an initial policy that can be described finitely. For example, for A = {1, . . . , A}, we can
let σ1(s) = 1 for all s ∈ S. Then, the algorithm stores only deviations from the initial policy, which total at most k
at the kth iteration.

17

4.3 Proof of Convergence

In this section we show that the simplex algorithm of Section 4.2 strictly improves in every iteration
and that it converges to optimality.

In Step 2(e) of the algorithm, a pivot operation is performed only if γk,N (sk, ak) > δ̄(sk, ak, N). This
inequality implies that the reduced cost of variable x(sk, ak) is positive as shown in the following
lemma. For s ∈ S, a ∈ A, and k = 1, 2, . . ., we use γk(s, a) to denote the reduced cost of variable
x(s, a) where the current policy is σk.

Lemma 4.6 The reduced cost γk(sk, ak) of the state-action pair chosen in iteration k of the simplex
algorithm is strictly positive.

Proof: We have

γk(sk, ak) ≥ γk,N (sk, ak)− δ(σk, sk, ak, N) ≥ γk,N (sk, ak)− δ̄(sk, ak, N) > 0

where the first inequality follows by Lemma 4.4, the second by the definition of δ̄(sk, ak, N), and
the last by Step 2(e) of the algorithm. �

By this lemma and Proposition 4.2, the following corollary is immediate. We denote f(xk) as fk

for simplicity.

Corollary 4.7 The objective function of (D) is strictly improved by the simplex algorithm in every
iteration, i.e., fk+1 > fk for k = 1, 2,

The next corollary shows that the value function of the policies found by the algorithm improves
in every iteration.

Corollary 4.8 The value function of the policies obtained by the simplex algorithm is nondecreasing
in every state and strictly improves in at least one state in every iteration, i.e., for any k, yk+1 ≥ yk
and there exists s ∈ S for which yk+1(s) > yk(s).

Proof: As shown in the proof of Proposition 4.2,

yk+1 − yk = (I − αPσk+1)−1(rσk+1 + αPσk+1yk − yk),

and for s ∈ S,

yk+1(s)− yk(s) = γk(sk, ak)
∞∑
n=0

αnPnσk+1(sk|s).

Since γk(sk, ak) > 0, we have yk+1(s)− yk(s) ≥ 0 for all s ∈ S. Moreover,

yk+1(sk)− yk(sk) = γk(sk, ak)
∞∑
n=0

αnPnσk+1(sk|sk) ≥ γk(sk, ak)P 0
σk+1(sk|sk) = γk(sk, ak) > 0.

�

From the above corollaries, the next corollary is trivial.

Corollary 4.9 The simplex algorithm does not repeat any non-optimal basic feasible solution.

18

The next lemma shows that the algorithm finds a pivot operation satisfying the conditions as long
as the current basic feasible solution is not optimal.

Lemma 4.10 Step 2 of the algorithm terminates if and only if xk is not optimal to (D).

Proof: In Appendix F.

In the rest of this section we show that the algorithm converges in value to optimality. We begin
by proving a few useful lemmas.

From Proposition 4.2, we know that β(sk)γk(sk, ak) is a lower bound on the improvement of the
objective function in iteration k. The next lemma shows that fk converges, and thus the guaranteed
improvement should converge to zero.

Lemma 4.11 The sequence fk has a finite limit and β(sk)γk(sk, ak) tends to zero as k →∞.

Proof: For any k,

fk = f(xk) = g(yk) =

∞∑
s=1

β(s)yk(s) ≤ L
∞∑
s=1

β(s)w(s) <∞,

where the second equality follows by Theorem 3.8, the first inequality by (5), and the last inequality
by (7). By Corollary 4.7, the sequence fk is an increasing sequence. Therefore, fk has a finite
limit, and thus fk+1− fk converges to zero as k →∞. Since β(sk)γk(sk, ak) is nonnegative for any
k, by Proposition 4.2, we can conclude that β(sk)γ(sk, ak) converges to zero. �

The next lemma shows that N(k), the size of the finite truncation at which the simplex algorithm
finds a state-action pair satisfying the conditions of Step 2(e), tends to infinity as k →∞.

Lemma 4.12 N(k)→∞ as k →∞.

Proof: This proof is similar to the proof of Lemma 5.7 in [8].

The lemma holds trivially if xk is optimal for any k. Suppose that this is not the case, and that
there exists an integer M such that N(k) = M for infinitely many k. Let {ki}∞i=1 be the infinite
subsequence of iteration counters in which this occurs. Let σki,M be the stationary deterministic
policy in the M -state truncation defined by σki(s) for s = 1, . . . ,M . Note that in the M -state
truncation of the original MDP, since A is finite, there are only a finite number of stationary
deterministic policies. Thus, there exists a stationary deterministic policy of the M -state truncation
that appears for infinitely many ki. Let σ∗,M denote the M -state stationary deterministic policy
and, passing to a subsequence if necessary, let σki,M = σ∗,M .

In the simplex algorithm, the nonbasic variable chosen by the algorithm is completely characterized
by the basic feasible solution of the M -state truncation. Thus, in iteration ki for i = 1, 2, . . ., the
state-action pair chosen for a pivot operation is the same. Let (s∗, a∗) denote this state-action pair.
For i = 1, 2, . . ., in iteration ki of the simplex algorithm, the improvement of the objective function
is

fki+1 − fki ≥ β(s∗)γki(s∗, a∗) ≥ β(s∗)(γki,M (s∗, a∗)− δ(σki , s∗, a∗,M))

≥ β(s∗)(γki,M (s∗, a∗)− δ̄(s∗, a∗,M)) > 0,

where the first inequality follows by Proposition 4.2, the second by Lemma 4.4, the third by the defi-
nition of δ̄(s∗, a∗,M), and the last by Step 2(e) of the algorithm. Note that the approximate reduced

19

cost γki,M (s∗, a∗) is also solely determined by the basic feasible solution of the M -state truncation.
Thus, the last nonzero expression in the above inequalities, β(s∗)(γki,M (s∗, a∗)− δ̄(s∗, a∗,M)), is a
positive constant. This implies that the objective function is increased by at least a fixed amount
in iteration ki for i = 1, 2, However, we know that fk is an increasing convergent sequence from
Corollary 4.7 and Lemma 4.11. Thus, we established the result by contradiction. �

Theorem 4.13 Let f? be the optimal value of (D). The simplex algorithm converges to optimality
in value, i.e., limk→∞ f

k = f?.

Proof: The main steps of this proof are similar to the steps of the proof of Theorem 5.3 in [8], but
details of each step are quite different. We borrowed some of their notation.

This theorem trivially holds if xk is optimal for any k, so suppose that this is not the case.

There exists a sequence of positive integers {rk} such that srk →∞ as k →∞. Indeed, recall that
sk is the state where the algorithm performs a pivot operation in iteration k. Suppose that there
exists N ′ such that sk < N ′ for all k. Then, the algorithm performs pivot operations only for states
less than N ′, and thus, can encounter only a finite number of basic feasible solutions, since the action
set A is finite. However, we assumed that xk is not optimal for any k and the algorithm performs
a pivot operation as long as it does not reach an optimal solution (Lemma 4.10) and never repeats
any non-optimal basic feasible solutions (Corollary 4.9). Thus, we reached a contradiction.

We will next show that the sequence xrk has a converging subsequence whose limit is an optimal
solution to (D). The fact that srk →∞ as k →∞ will play a role in showing the optimality of the
limit, later in this proof.

For any k, xrk belongs to F which is shown to be compact in Theorem 11.3 of [5] or Corollary 10.1
of [2], and thus, there exists a convergent subsequence xtk of xrk with limk→∞ x

tk = x̄. Note that
x̄ ∈ F . Let ytk be the corresponding subsequence of yk. Let YL , {y ∈ Rn : ‖y‖w ≤ L}, then
YL is a compact set of R∞ under the product topology by Tychonoff’s theorem (e.g., see Theorem
2.61 of [1]). By (5), we have ytk ∈ YL for all k, and thus, the subsequence ytk also has a further
convergent subsequence yuk . Let limk→∞ y

uk = ȳ, and note that limk→∞ x
uk = x̄. We will show

that x̄ and ȳ are complementary and ȳ is feasible to (P), and thus, that x̄ is optimal for (D).

Since xuk and yuk are complementary, we have

xuk(s, a)

[
r(s, a)−

(
yuk(s)− α

∞∑
t=1

p(t|s, a)yuk(t)

)]
= 0 for s ∈ S, a ∈ A. (24)

Recall that, by (5), |yuk(t)| ≤ Lw(t) for any state t and

∞∑
t=1

p(t|s, a)Lw(t) ≤ κLw(s) for any s ∈ S.

Thus, by Proposition 2.6, we have

lim
k→∞

∞∑
t=1

p(t|s, a)yuk(t) =

∞∑
t=1

p(t|s, a)ȳ(t).

Consequently, by taking k →∞ in (24), we obtain

x̄(s, a)

[
r(s, a)−

(
ȳ(s)− α

∞∑
t=1

p(t|s, a)ȳ(t)

)]
= 0 for s ∈ S, a ∈ A.

20

Therefore, x̄ and ȳ are complementary.

Suppose that ȳ is not feasible to (P). That is, there exists (s, a) ∈ S ×A and ε > 0 such that

r(s, a) + α

∞∑
t=1

p(t|s, a)ȳ(t)− ȳ(s) = ε.

Thus, there exists K such that for k ≥ K,

r(s, a) + α

∞∑
t=1

p(t|s, a)yuk(t)− yuk(s) ≥ 1

2
ε. (25)

Since limk→∞N(uk) =∞ by Lemma 4.12, s ≤ N(uk) for sufficiently large k. For all such k,

r(s, a) + α
∞∑
t=1

p(t|s, a)yuk(t)− yuk(s) = γuk(s, a) ≤ γuk,N(uk)(s, a) + δ(σuk , s, a,N(uk))

≤ γuk,N(uk)(s, a) + δ̄(s, a,N(uk)) (26)

by Lemma 4.4 and the definition of δ̄(s, a,N(uk)). By Lemma 4.12, we know that δ̄(s, a,N(uk))→ 0
as k → ∞. We will also show that γuk,N(uk)(s, a) becomes nonpositive as k → ∞, which will
contradict (25), and thus, we will conclude that ȳ is feasible to (P).

We have:

β(s)γuk,N(uk)(s, a) ≤ β(suk)γuk,N(uk)(suk , auk)

≤ β(suk)γuk(suk , auk) + β(suk)δ(σuk , suk , auk , N(uk)) (27)

where the first inequality is due to (23). By Lemma 4.11, the first term of the right hand side
of (27) tends to zero as k → ∞. Also, by (20), the second term of the right hand side of (27) is
bounded as follows:

β(suk)δ(σuk , suk , auk , N(uk)) ≤ L(L+ ακL+ ακ)β(suk)w(suk).

The right hand side tends to zero as k →∞ because β(s)w(s)→ 0 as s→∞ by (7) and suk →∞
as k →∞ by the choice of sequence uk. Therefore, the right hand side of (27) converges to zero as
k →∞. Since β(s) > 0, we obtain that lim supk γ

uk,N(uk)(s, a) ≤ 0. Thus, (25) is contradicted and
so ȳ is feasible to (P).

Thus, we have shown that x̄ is optimal to (D). By following arguments similar to those of Lemma
8.5 of [2], one can show that f , the objective function of (D), is continuous on F under the product
topology. Thus, fuk converges to f? as k → ∞. However, fk converges by Lemma 4.11 and its
limit should be the same as the limit of its subsequence. Therefore, fk converges to f? as k →∞. �

4.4 Examples (continued)

Recall that our simplex algorithm relies on δ̄(s, a,N) — a finitely computable upper bound on
δ(σ, s, a,N) that converges to zero as N increases. Let us demonstrate how this bound can be
computed for the examples of inventory management and queueing from Section 2.2.

21

Example 1 (continued) In the inventory example, recall that the maximum inventory level that
can be reached by n transitions from state s is s+ nM . An upper bound on the first term in (19)
can be computed as follows:

L
∑
t>N

∞∑
n=1

αnPnσ (t|s)w(t) = L
∞∑
n=1

αn
∑
t>N

Pnσ (t|s)(C +Dt)

≤ L
∞∑
n=1

αn[C +D(s+ nM)]1{N < s+ nM} = L

∞∑
n=ν

αn[C +D(s+ nM)]

=
Lαν

1− α

[
(C +Ds) +DM

α+ ν − αν
1− α

]
,

where the exchange of infinite sums follows by Proposition 2.3 and ν , bN−sM c + 1. An upper
bound on the rest of (19) can be found similarly. Thus, we obtain the following upper bound on
δ(σ, s, a,N):4

δ(σ, s, a,N) ≤ Lαν

1− α

[
(C +Ds) +DM

α+ ν − αν
1− α

]
+

Lα2

1− α

(
C +DN +

DM

1− α

)
1{N < s+M}+

Lαν

1− α

[
C +Ds+DM

α+ ν − αν
1− α

]
1{N ≥ s+M}

+ Lα(C +Ds+DM)1{N < s+M}
, δ̄(s, a,N)

and δ̄(s, a,N) decreases to zero as N increases. It can also be denoted as δ̄(s,N) since it does not
depend on action a.

In the above example, w is a linear function of the state. However, note that for any polynomial
function w, one can easily find δ̄(s, a,N) that converges to zero as N →∞ by following arguments
similar to the above steps.

Example 2 (continued) For n = 1, 2, . . ., let Xn be a Poisson random variable with mean na1
max

and let Y be a random variable that equals Xn with probability (1− α)αn−1 for n = 1, 2, Let
µ denote the expected value of Y . For a random variable X, let fX and FX denote the probability
distribution function and the cumulative distribution function of X, respectively.

Then, for s ∈ S and N = 1, 2, . . ., we define δ̄(s, a,N) as

δ̄(s, a,N) , L · g(s,N) + αL
N∑
t=0

p(t|s, a) · g(t,N) + α · L · h(s,N) (28)

where

g(s,N) ,
α

1− α

[
C

(
µ−

N−s∑
u=0

ufY (u)

)
+ (Cs+D)(1− FY (N − s))

]
and

h(s,N) , C

(
a1

max −
N−s∑
u=0

ufX1(u)

)
+ (Cs+D)(1− FX1(N − s)).

4In (19), it is assumed that S = {1, 2, . . .}. However, note that in Examples 1 and 2, S = {0, 1, . . .}. Thus, we
derive an upper bound on δ(σ, s, a,N) for which the first sum in the second term in (19) starts with t = 0 instead
of t = 1. Then, δ(σ, s, a,N) is an error bound of the approximate reduced cost computed from the (N + 1)-state
truncation.

22

In Appendix G, we prove that δ(σ, s, a,N) ≤ δ̄(s, a,N) and that δ̄(s, a,N) → 0 as N → ∞, and
illustrate how δ̄(s, a,N) can be computed finitely.

5 Numerical Illustration

We implemented the simplex algorithm and tested it on five instances of the inventory management
problem of Example 1. Recall that b,K, c, h,M denote the per-unit price, the fixed ordering cost,
the per-unit ordering cost, the per-unit inventory cost, and the maximum ordering level, respec-
tively, and let d denote the expected demand in one period. The parameters of the five instances
were (b,K, c, h, d,M) = (15, 3, 5, 0.1, 2, 4), (10, 5, 7, 0.1, 2, 4), (10, 3, 5, 0.2, 2, 4), (10, 3, 5, 0.2, 2, 5),
(10, 3, 5, 0.2, 3, 5), respectively. For all instances, demand in each period follows Poisson distribu-
tion with the specified expected value. We used discount factor α = 0.9. The simplex algorithm
was written in Python and ran on 2.93 GHz Intel Xeon CPU.

Figure 1 shows cost improvement of the simplex algorithm for the above instances of the inventory
management problem as a function of (a) CPU time and (b) number of pivot operations. The
vertical axis of Figure 1 is the difference between the objective function value of (D) of policies
obtained by the simplex algorithm and the optimal objective function value. For s ∈ S, the initial
basic action σ1(s) was the remainder of s+ 3 divided by M . The objective function values of each
policy were estimated by computing

∑N
s=1 β(s)yN (s) for increasing N until the change of the value

in consecutive iterations was less than a threshold, where yN is obtained by solving (18).

Figure 1 illustrates that for all instances, the difference between the objective function value of poli-
cies and the optimal value decreased monotonically and converged to zero. As shown in Figure 1b,
the algorithm converges at similar rates for all instances as the number of iterations increases, but
CPU time of one iteration is longer on average for instances 4 and 5 as shown in Figure 1a, possibly
because of the higher maximum ordering level.

6 Discussion and Future Research

It is a natural next step to compare the simplex algorithm to the existing methods for countable-
state MDPs. However, it is not straightforward how to make an empirical comparison. Aside from
deciding how to implement those algorithms in a fair manner and which problem instances to try,
another important issue is the cost of data acquisition. As those algorithms proceed, they require
transition probabilities and rewards from more states. In practice, obtaining the problem data can
be expensive. For example, if an algorithm converges to optimality in value faster than another
algorithm but requires significantly more data, then it is not clear which one is a better solution
method.

Recently, complexity of the simplex method with the Dantzig’s pivoting rule for finite-state MDPs
was studied in [25]. If one can derive a number of iterations (or computational complexity) for the
simplex algorithm for countable-state MDPs to find a policy whose value function is within a given
threshold from the optimal value function, then it would be possible to compare the convergence
rates of the algorithms for countable-state MDPs by comparing the result for the simplex algorithm
to the ones in [23, 21]. However, the convergence rates provide us with upper bounds on number of
iterations (or computational complexity) to achieve near-optimality so this theoretical comparison

23

0 1000 2000 3000 4000 5000 6000
CPU time (secs)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

(o
b
j
ft

n
 v

a
lu

e
)

-
(o

p
t

v
a
lu

e
)

instance 1
instance 2
instance 3
instance 4
instance 5

(a) For CPU time

0 5 10 15 20 25 30
Number of pivots

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

(o
b
j
ft

n
 v

a
lu

e
)

-
(o

p
t

v
a
lu

e
)

instance 1
instance 2
instance 3
instance 4
instance 5

(b) For number of pivots

Figure 1: Cost improvement of the simplex algorithm for inventory management problems

24

would also be incomplete.

This paper generalized the LP approach in [8] to CILP formulations of a more general class of
MDPs and introduced a simplex-type algorithm to a class of CILPs with less structure than those
in the literature. To extend the LP approach of this paper to a more general class of CILPs, one
would have to understand what aspects of the CILPs considered in this paper enabled the success of
the LP approach. To be more precise, one needs to analyze what characteristics of the assumptions
in Section 2.1 and the dynamic programming structure in the coefficient matrix (14) of (D) made
it possible to establish the standard LP results and devise the simplex algorithm.

References

[1] C. Aliprantis and K. Border. Infinite-dimensional analysis: a hitchhiker’s guide. Springer-
Verlag, Berlin, Germany, 1994.

[2] E. Altman. Constrained Markov decision processes. Chapman and Hall, CRC, 1998.

[3] E. J. Anderson and P. Nash. Linear programming in infinite-dimensional spaces: theory and
applications. John Wiley and Sons, Chichester, UK, 1987.

[4] R. Cavazos-Cadena. Finite-state approximations for denumerable state discounted Markov
decision processes. Applied Mathematics and Optimization, 14:1–26, 1986.

[5] E. Feinberg and A. Shwartz. Handbook of Markov decision processes. Kluwer International
Series, 2002.

[6] A. Ghate. Duality in countably infinite linear programs. 2014. Working paper.

[7] A. Ghate, D. Sharma, and R. L. Smith. A shadow simplex method for infinite linear programs.
Operations Research, 58:865–877, 2010.

[8] A. Ghate and R. L. Smith. A linear programming approach to nonstationary infinite-horizon
Markov decision processes. Operations Research, 61:413–425, 2013.

[9] J. Harrison. Discrete dynamic programming with unbounded rewards. Annals of Mathematical
Statistics, 43:636–644, 1972.

[10] O. Hernández-Lerma. Finite-state approximations for denumerable multidimensional state
discounted Markov decision processes. Journal of Mathematical Analysis and Applications,
113:382–389, 1986.

[11] S. Lippman. On dynamic programming with unbounded rewards. Management Science,
21:1225–1233, 1975.

[12] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley and Sons, New York, NY, USA, 1994.

[13] S. Resnick. A Probability Path. Birkhäuser, 1999.

[14] H. E. Romeijn and R. L. Smith. Shadow prices in infinite dimensional linear programming.
Mathematics of Operations Research, 23:239–256, 1998.

[15] H. E. Romeijn, R. L. Smith, and J. Bean. Duality in infinite dimensional linear programming.

25

Mathematical Programming, 53:79–97, 1992.

[16] S. Ross. Introduction to stochastic dynamic programming. Academic Press, New York, NY,
USA, 1983.

[17] H. Royden. Real Analysis. Macmillan Publishing Company, New York, 1988.

[18] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, Inc., 1976.

[19] T. C. Sharkey and H. E. Romeijn. A simplex algorithm for minimum cost network flow
problems in infinite networks. Networks, 52:14–31, 2008.

[20] J. Wessels. Markov programming by successive approximations with respect to weighted supre-
mum norms. Journal of Mathematical Analysis and Applications, 58:326–335, 1977.

[21] D. White. Finite state approximations for denumerable-state infinite horizon contracted
Markov decision processes: The policy space method. Journal of Mathematical Analysis and
Applications, 72:512–523, 1979.

[22] D. White. Finite state approximations for denumerable state infinite horizon discounted
Markov decision processes. Journal of Mathematical Analysis and Applications, 74:292–295,
1980.

[23] D. White. Finite state approximations for denumerable state infinite horizon discounted
markov decision processes: The method of successive approximations. In R. Hartley,
L. Thomas, and D. White, editors, Recent Developments in Markov Decision Processes. Aca-
demic Press, New York, 1980.

[24] D. White. Finite state approximations for denumerable state infinite horizon discounted
Markov decision processes with unbounded rewards. Journal of Mathematical Analysis and
Applications, 86:292–306, 1982.

[25] Y. Ye. The Simplex and policy-iteration methods are strongly polynomial for the Markov
decision problem with a fixed discount rate. Mathematics of Operations Research, 36:593–603,
2011.

A Derivation of (D) and Proof of Strong Duality

Here we provide some intuition behind problem (D) by illustrating its relationship to the MDP
problem. We also prove strong duality between (P) and (D).

We first define an occupancy measure and will show that the feasible region of (D) coincides with
the set of occupancy measures of all policies. In order to introduce the concept of an occupancy
measure, we consider the expected total reward criterion, instead of the discounted one. It is
well known (e.g., see Chapter 10 of [2]) that we can transform an MDP with the expected total
discounted reward criterion into an equivalent MDP with the expected total reward criterion, by
adding an absorbing state, say, 0. Let S̃ = S∪{0} = {0, 1, 2, . . .} and set the transition probabilities

26

and rewards for s ∈ S̃ and a ∈ A as:

p̃(t|s, a) ,

αp(t|s, a) if s 6= 0, t 6= 0

1− α if s 6= 0, t = 0

1 if s = t = 0

,

r̃(s, a) ,

{
r(s, a) if s 6= 0

0 if s = 0.

Extend β by letting β(0) = 0 and π by arbitrarily choosing an action at state 0. The expected
total reward is defined as:

Ṽπ(β) , Ẽβπ

[∞∑
n=0

r̃(S̃n, Ãn)

]
,

where P̃ βπ and Ẽβπ are defined similarly for the new MDP, and the processes {S̃n} and {Ãn} are
also defined accordingly. Then it is easy to show that Vπ(β) = Ṽπ(β) for any policy π. We call this
the absorbing MDP formulation of the original discounted MDP. It is said to be absorbing since it
has a finite expected lifetime before entering 0 under any policy, i.e., EβπT = 1/(1−α) <∞ for any
policy π, where T = min{n ≥ 0 : sn = 0}. Since the original discounted MDP and its absorbing
MDP formulation can be considered equivalent, we use the same notation for both; it will be clear
which one is discussed from the context.

For s ∈ S and a ∈ A, the occupancy measure of the state-action pair is denoted as Qβπ(s, a) and
defined as the expectation of the number of visits to (s, a) until entering the absorbing state 0
under policy π with the initial state distribution β, that is, for any s ∈ S and a ∈ A,

Qβπ(s, a) , Eβπ

T−1∑
n=0

1{Sn = s,An = a} = Eβπ

∞∑
n=0

1{Sn = s,An = a} =

∞∑
n=0

P βπ {Sn = s,An = a},

(29)
where the last equality is due to Proposition 2.5. (An equivalent alternative interpretation of the
occupancy measure is as the total expected discounted time spent in different state-action pairs in
the original discounted MDP.)

It is well known (e.g., Theorem 8.1 of [2]) that for any policy π, there exists a stationary policy σ

such that Qβπ = Qβσ, namely,

σ(a|s) =
Qβπ(s, a)∑
b∈AQ

β
π(s, b)

, (30)

where σ(a|s) denotes the probability of σ choosing a at s. This result implies that Q = QM = QS
where Q,QM , and QS denote the sets of occupancy measures of all policies, Markov policies, and
stationary policies, respectively.

It is also well known (e.g., Theorem 11.3 of [5] and Corollary 10.1 of [2]) that QS coincides with
the set of nonnegative and summable solutions of the following set of equations:

A∑
a=1

x(s, a) = β(s) + α

∞∑
t=1

A∑
a=1

p(s|t, a)x(t, a) for s 6= 0. (31)

Therefore, the feasible region of (D) is the set of occupancy measures of all stationary policies, and
thus, it is the set of occupancy measures of all policies.

27

By using arguments similar to those in the proof of Theorem 8.3 of [2], one can show that for any
Markov policy π,

Vπ(β) =
∞∑
s=1

A∑
a=1

r(s, a)Qβπ(s, a). (32)

From Proposition 2.2 and (7), we know that Vπ(β) is finite, and thus the right hand side of the
above equation is finite, for any Markov policy π. Since the feasible region of (D) is the set of
occupancy measures of all stationary policies, the objective function of (D) is finite for any feasible
solution. Moreover, by Lemma 3.1, a stationary policy whose occupancy measure is an optimal
solution to (D) is also optimal for the MDP. Given an optimal solution of (D), a stationary optimal
policy can be obtained by (30).

By following the arguments of Lemma 8.5 of [2], one can show that f , the objective function of
(D), is continuous on its feasible region under the usual product topology. In addition, it is also
well known (e.g., Theorem 11.3 of [5] and Corollary 10.1 of [2]) that the feasible region of (D) is
a compact subset of R∞ under the product topology. Therefore, the maximum of f is attained in
the feasible region of (D).

Recall that the optimal value of (P) is V ?(β). As we just discussed, the optimal value of (D) is the
maximum of Vπ(β) over all policies π, thus (P) and (D) satisfy strong duality.

B Proof of Theorem 3.8

Since x and y are complementary, for any s ∈ S and a ∈ A,

r(s, a)x(s, a) =

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)
x(s, a).

By summing up both sides for s = 1, 2, . . . , N and a = 1, 2, . . . , A,

N∑
s=1

A∑
a=1

r(s, a)x(s, a)

=

N∑
s=1

A∑
a=1

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)
x(s, a)

=

N∑
s=1

A∑
a=1

y(s)x(s, a)− α
N∑
s=1

A∑
a=1

∞∑
t=1

p(t|s, a)y(t)x(s, a)

=

N∑
s=1

y(s)

A∑
a=1

x(s, a)−
∞∑
t=1

y(t)α

N∑
s=1

A∑
a=1

p(t|s, a)x(s, a)

=

N∑
s=1

y(s)

A∑
a=1

x(s, a)−
∞∑
t=1

y(t)

(
A∑
a=1

x(t, a)− β(t)− α
∞∑

s=N+1

A∑
a=1

p(t|s, a)x(s, a)

)
, (33)

where the exchange of sums in the third equality is justified by the fact that
∑∞

t=1 p(t|s, a)y(t) is
finite for any s and a and the last equality is obtained by the feasibility of x to (D). We will find
the limit of (33) as N →∞.

28

We use the fact that ‖y‖w is finite to observe the following:

∞∑
s=1

A∑
a=1

|y(s)x(s, a)| =
∞∑
s=1

|y(s)|
A∑
a=1

x(s, a) ≤ ‖y‖w
∞∑
s=1

w(s)

A∑
a=1

x(s, a),

and since x is feasible to (D), there exists a stationary policy σ such that (here we consider the
absorbing MDP formulation introduced in Appendix A)

‖y‖w
∞∑
s=1

w(s)

A∑
a=1

x(s, a) = ‖y‖w
∞∑
s=1

w(s)

A∑
a=1

Qβσ(s, a) = ‖y‖w
∞∑
s=1

A∑
a=1

∞∑
n=0

P βσ (Sn = s,An = a)w(s)

= ‖y‖w
∞∑
s=1

∞∑
n=0

A∑
a=1

P βσ (Sn = s,An = a)w(s) = ‖y‖w
∞∑
s=1

∞∑
n=0

P βσ (Sn = s)w(s), (34)

where the third equality follows by Proposition 2.3. However,

∞∑
n=0

∞∑
s=1

P βσ (Sn = s)w(s) = βT (w + αPσw + α2P 2
σw + . . .)

≤ βT [(w + (ακ)w + (ακ)2w + . . .+ (ακ)J−1w) + (λw + λ(ακ)w + . . .+ λ(ακ)J−1w) + . . .]

= LβTw <∞

by Assumptions A2 and A3, and (7). Thus, the sum (34) is finite by Proposition 2.3. Therefore,
we have

∞∑
s=1

y(s)
A∑
a=1

x(s, a) <∞. (35)

We will also prove that
∞∑
t=1

y(t)
∞∑

s=N+1

A∑
a=1

p(t|s, a)x(s, a) <∞ (36)

and that the above sum tends to zero as N → ∞. We first show that the following sum is
finite:

∞∑
s=1

∞∑
t=1

∣∣∣∣∣
A∑
a=1

y(t)p(t|s, a)x(s, a)

∣∣∣∣∣ ≤
∞∑
s=1

∞∑
t=1

A∑
a=1

|y(t)| p(t|s, a)x(s, a) =

∞∑
s=1

A∑
a=1

x(s, a)
∞∑
t=1

p(t|s, a) |y(t)|

≤
∞∑
s=1

A∑
a=1

x(s, a)‖y‖w
∞∑
t=1

p(t|s, a)w(t) ≤ κ‖y‖w
∞∑
s=1

A∑
a=1

w(s)x(s, a) <∞,

where the interchange of sums in the equality follows by Proposition 2.3, the second inequality by
y ∈ Yw, the third inequality by Assumption A2, and the last infinite sum is finite as shown before.
Then, by Proposition 2.4,

∞∑
s=1

∞∑
t=1

A∑
a=1

y(t)p(t|s, a)x(s, a) =

∞∑
t=1

∞∑
s=1

A∑
a=1

y(t)p(t|s, a)x(s, a) <∞.

Therefore,
∞∑

s=N+1

∞∑
t=1

A∑
a=1

y(t)p(t|s, a)x(s, a)→ 0 as N →∞.

29

Using the same arguments, we can also show that, for any N ,

∞∑
s=N+1

∞∑
t=1

A∑
a=1

y(t)p(t|s, a)x(s, a) =

∞∑
t=1

∞∑
s=N+1

A∑
a=1

y(t)p(t|s, a)x(s, a) <∞.

Therefore, (36) is proven and its left hand side converges to zero as N →∞. Also, we know

∞∑
t=1

β(t)|y(t)| ≤ ‖y‖w
∞∑
t=1

β(t)w(t) <∞. (37)

Then, by (35), (36), and (37), we can write (33) as

N∑
s=1

A∑
a=1

r(s, a)x(s, a)

=

N∑
s=1

y(s)

A∑
a=1

x(s, a)−
∞∑
t=1

y(t)

A∑
a=1

x(t, a) +

∞∑
t=1

β(t)y(t) + α

∞∑
t=1

y(t)

∞∑
s=N+1

A∑
a=1

p(t|s, a)x(s, a).

By letting N →∞ on both sides, we obtain

∞∑
s=1

A∑
a=1

r(s, a)x(s, a) =

∞∑
t=1

β(t)y(t),

and thus, the theorem is proven. �

C Proof of Theorem 3.9

Since y and x are feasible to (P) and (D), respectively, for any s ∈ S and a ∈ A,

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
≤ 0.

By summing up the above for s = 1, 2, . . . , N and a = 1, 2, . . . , A, we obtain

0 ≥
N∑
s=1

A∑
a=1

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]

=

N∑
s=1

A∑
a=1

r(s, a)x(s, a)−
N∑
s=1

A∑
a=1

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)
x(s, a)

=
N∑
s=1

A∑
a=1

r(s, a)x(s, a)−
N∑
s=1

y(s)
A∑
a=1

x(s, a) +
∞∑
t=1

y(t)
A∑
a=1

x(t, a)−
∞∑
t=1

β(t)y(t)

− α
∞∑
t=1

y(t)

∞∑
s=N+1

A∑
a=1

p(t|s, a)x(s, a), (38)

30

where the last equality is obtained similarly to the proof of Theorem 3.8. Note that by strong
duality we have

∞∑
s=1

A∑
a=1

r(s, a)x(s, a) =
∞∑
t=1

β(t)y(t).

Therefore, by letting N →∞ in (38) and using arguments similar to the proof of Theorem 3.8, we
obtain that

0 ≥
∞∑
s=1

A∑
a=1

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
= 0,

and thus, for any s ∈ S and a ∈ A,

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
= 0,

i.e., y and x are complementary. �

D Proof of Lemma 3.10

For any x ∈ F , there exists a stationary policy σ such that x(s, a) = Qβσ(s, a) for s ∈ S, a ∈
A. By (29), it suffices to show (here we consider the absorbing MDP formulation introduced in
Appendix A)

∞∑
s=1

A∑
a=1

∞∑
n=0

P βσ {Sn = s,An = a} =
1

1− α
.

Using Proposition 2.3 to interchange the sums, we have:

∞∑
n=0

∞∑
s=1

A∑
a=1

P βσ {Sn = s,An = a} =
∞∑
n=0

∞∑
s=1

P βσ {Sn = s} =
∞∑
n=0

αn =
1

1− α
.

�

E Proof of Lemma 4.3

We prove this lemma for a more general case of an arbitrary stationary policy σ (rather than just
stationary deterministic policy). For s = 1, . . . , N ,

yN (s) =rσ(s) + α

N∑
t1=1

Pσ(t1|s)yN (t1)

=rσ(s) + α

N∑
t1=1

Pσ(t1|s)rσ(t1) + α2
N∑
t1=1

N∑
t2=1

Pσ(t1|s)Pσ(t2|t1)rσ(t2)

+ α3
N∑
t1=1

N∑
t2=1

N∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3) +

31

On the other hand, for s = 1, . . . , N ,

y(s) =rσ(s) + α
∞∑
t1=1

Pσ(t1|s)rσ(t1) + α2
∞∑
t1=1

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)rσ(t2)

+ α3
∞∑
t1=1

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3) +

Then, for s = 1, . . . , N ,

|y(s)− yN (s)|

=

∣∣∣∣∣∣α
∑
t1>N

Pσ(t1|s)rσ(t1) + α2

∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)rσ(t2) +
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)rσ(t2)

+ α3

∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3) +
∑
t1≤N

∑
t2>N

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3)

+
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3)

+ . . .

∣∣∣∣∣∣
≤α

∑
t1>N

Pσ(t1|s)w(t1) + α2

∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)w(t2) +
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2)

+ α3

∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) +
∑
t1≤N

∑
t2>N

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+ . . . (39)

by Assumption A1. Note that the terms of the infinite sum on the right hand side of (39) can be
reordered by Proposition 2.3. In particular, consider rearranging the terms in (39) as follows:[
α
∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

]

+

α2
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∑
t1≤N

∑
t2>N

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

+

α3
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+α4
∑
t1≤N

∑
t2≤N

∑
t3>N

∞∑
t4=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)Pσ(t4|t3)w(t4) + . . .

+ (40)

32

First, let us compute an upper bound on the first bracket of (40) by considering groups of J terms,
and establishing bounds using A2 and A3:

α
∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

≤

[
α
∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1>N

Pσ(t1|s)κw(t1) + . . .+ αJ
∑
t1>N

Pσ(t1|s)κJ−1w(t1)

]

+

[
α
∑
t1>N

Pσ(t1|s)λw(t1) + α2
∑
t1>N

Pσ(t1|s)λκw(t1) + . . .+ αJ
∑
t1>N

Pσ(t1|s)λκJ−1w(t1)

]
+ . . .

= α
1

1− λ
[1 + (ακ) + . . .+ (ακ)J−1]

∑
t1>N

Pσ(t1|s)w(t1) = Lα
∑
t1>N

Pσ(t1|s)w(t1).

Applying similar arguments to the other terms of (40), we obtain the following upper bound:

L

α ∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

≤ L

[
α
∑
t1>N

Pσ(t1|s)w(t1) + α2
∞∑
t1=1

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∞∑
t1=1

∞∑
t2=1

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

]

= L

[
α
∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t2>N

∞∑
t1=1

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∑
t3>N

∞∑
t1=1

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

]

= L

∞∑
n=1

∑
t>N

αnPnσ (t|s)w(t). (41)

by Proposition 2.3. Combining these, we obtain

|y(s)− yN (s)| ≤ L
∞∑
n=1

∑
t>N

αnPnσ (t|s)w(t) = L
∑
t>N

∞∑
n=1

αnPnσ (t|s)w(t), (42)

again by Proposition 2.3. The right hand side of (42) converges to zero as N →∞ because

∞∑
n=1

∞∑
t=1

αnPnσ (t|s)w(t) ≤ Lw(s),

which can be shown by using Assumptions A2 and A3 following already familiar steps. Thus, the
lemma is proven. �

F Proof of Lemma 4.10

In order to prove this lemma, we introduce a new interpretation of the approximate reduced cost
γk,N . As explained before, γk,N is the reduced cost (defined in (16)) of policy σk for the N -state
truncation of the original MDP, obtained by replacing states bigger than N with an absorbing
state where no reward is earned. We can extend the N -state truncation into a countable-state
MDP by adding artificial states that have zero initial probabilities and are never reached. It is easy

33

to prove that the countable-state version of the N -state truncation satisfies all the assumptions in
Section 2.1. Then, yk,N and γk,N are the exact value function and the exact reduced cost of policy
σk in the new countable-state MDP, respectively. Therefore, yk,N also satisfies |yk,N (s)| ≤ Lw(s)
for s = 1, . . . , N .

Thus, for s = 1, . . . , N and a ∈ A,

|γk,N (s, a)| =

∣∣∣∣∣r(s, a) + α

N∑
t=1

p(t|s, a)yk,N (t)− yk,N (s)

∣∣∣∣∣ ≤ |r(s, a)|+ α

N∑
t=1

p(t|s, a) |yk,N (t)|+ |yk,N (s)|

≤ w(s) + α

N∑
t=1

p(t|s, a)Lw(t) + Lw(s) ≤ w(s) + ακLw(s) + Lw(s) = [1 + (1 + ακ)L]w(s).

Suppose that xk is not optimal to (D). Then, yk must not be feasible to (P), so there exists a
state-action pair (ŝ, â) such that γk(ŝ, â) = ε > 0. Since we have limN→∞ γ

k,N (ŝ, â) = γk(ŝ, â) = ε,
there exists N1 ≥ ŝ such that for N ≥ N1, γk,N (ŝ, â) ≥ 3

4ε.

Since
∑∞

s=1 β(s)w(s) is finite, we know lims→∞ β(s)w(s) = 0. Thus, there exists s1 > ŝ such that
for s ≥ s1, [1 + (1 + ακ)L]β(s)w(s) < 3

4β(ŝ)ε. Then for N ≥ max{N1, s1}, s ∈ S such that
s1 ≤ s ≤ N , and a ∈ A,

β(ŝ)γk,N (ŝ, â) ≥ 3

4
β(ŝ)ε > [1 + (1 + ακ)L]β(s)w(s) ≥ β(s)γk,N (s, a).

That is, for N ≥ max{N1, s1}, state-action pair (s, a) such that s1 ≤ s ≤ N cannot achieve the
maximum in Step 2(d) of the simplex algorithm. Thus, for N ≥ max{N1, s1}, we can limit our
attention to the state-action pairs (s, a) such that s < s1 to find the maximum in Step 2(d) of the
simplex algorithm.

Let T be the set of state-action pairs (s, a) such that s < s1 and γk(s, a) > 0. Note that T is
a finite set and (ŝ, â) ∈ T . Since limN→∞ δ̄(s, a,N) = 0 and limN→∞ γ

k,N (s, a) = γk(s, a) for
any (s, a) ∈ S × A, there exists N2 such that for N ≥ N2, any (s, a) ∈ T satisfies γk,N (s, a) ≥
1
2γ

k(s, a) > δ̄(s, a,N). There also exists N3 such that for N ≥ N3, any (s′, a′) /∈ T such that s′ < s1

satisfies β(s′)γk,N (s′, a′) < min(s,a)∈T
1
2β(s)γk(s, a). Then, for N ≥ max{N1, N2, N3, s1} and for

any (s, a) ∈ T and any (s′, a′) /∈ T such that s′ < s1, we have β(s)γk,N (s, a) > 1
2β(s)γk(s, a) >

β(s′)γk,N (s′, a′), i.e., β(s)γk,N (s, a) > β(s′)γk,N (s′, a′). Thus, for N ≥ max{N1, N2, N3, s1},
the maximum in Step 2(d) of the algorithm is achieved by an element of T and the inequality
γk,N (s, a) > δ̄(s, a,N) is satisfied for any (s, a) ∈ T . Therefore, the Step 2 terminates with some
N ≥ max{N1, N2, N3, s1}.

Now suppose that xk is optimal for (D). Then yk is feasible to (P), so γk(s, a) ≤ 0 for all
(s, a) ∈ S × A. Suppose that the Step 2 terminates. Then, (sk, ak) satisfies γk,N (sk, ak) >
δ̄(sk, ak, N). However, by Lemma 4.4, we have γk(sk, ak) ≥ γk,N (sk, ak) − δ(σk, sk, ak, N) ≥
γk,N (sk, ak)− δ̄(sk, ak, N) > 0, which is a contradiction. �

G Example 2 (continued)

Let us first show that δ̄(s, a,N) is an upper bound of δ(σ, s, a,N) for any σ ∈ ΠSD.

34

The first term in (19) is bounded as follows:

L
∑
t>N

∞∑
n=1

αnPnσ (t|s)w(t) = L
∑

u>N−s

∞∑
n=1

αnPnσ (s+ u|s)w(s+ u)

≤ L
∑

u>N−s

∞∑
n=1

αnP{Xn = u}(Cs+ Cu+D)

= CL
∑

u>N−s

∞∑
n=1

αn
ena

1
max(na1

max)u

u!
u+ L(Cs+D)

∑
u>N−s

∞∑
n=1

αn
ena

1
max(na1

max)u

u!

= L

[
αC

1− α
∑

u>N−s

∞∑
n=1

(1− α)αn−1 e
na1max(na1

max)u

u!
u+

α

1− α
(Cs+D)

∑
u>N−s

∞∑
n=1

(1− α)αn−1 e
na1max(na1

max)u

u!

]

=
αL

1− α

[
C

(
µ−

N−s∑
u=0

ufY (u)

)
+ (Cs+D)(1− FY (N − s))

]
= Lg(s,N),

where the first equality is a change of variable u , t − s, the inequality follows by assuming
the maximum arrival rate (a1

max) and zero service rate, and the following equalities follow by the
definitions of Xn, Y , fY , and FY .

Similarly, the second term in (19) is bounded as follows:

αL
N∑
t=0

p(t|s, a)
∑
t′>N

∞∑
n=1

αnPnσ (t′|t)w(t′) ≤ αL
N∑
t=0

p(t|s, a)g(t,N). (43)

The last term in (19) is also bounded as follows:

αL
∑
t>N

p(t|s, a)w(t) = αL
∑

u>N−s
p(s+ u|s, a)(Cs+ Cu+D)

≤ αL
∑

u>N−s
P{X1 = u}(Cs+ Cu+D)

= αL

[
C

∑
u>N−s

P{X1 = u}u+ (Cs+D)
∑

u>N−s
P{X1 = u}

]

= αL

[
C

(
a1

max −
N−s∑
u=0

ufX1(u)

)
+ (Cs+D)(1− FX1(N − s))

]
= αLh(s,N)

by using similar arguments. Therefore, we showed that δ̄(s, a,N) ≥ δ(σ, s, a,N).

Now we show that δ̄(s, a,N) → 0 as N → ∞. Since the expectations of Y and X1 are finite,
it is clear that g(s,N) and h(s,N) converge to zero as N → ∞. Thus, it suffices to prove that
the second term of δ̄(s, a,N) in (28) converges to zero as N → ∞. This term can be written as

35

follows:

αL

N∑
t=0

p(t|s, a)g(t,N) =
α2CL

1− α

(
µ

N∑
t=0

p(t|s, a)−
N∑
t=0

p(t|s, a)

N−s∑
u=0

ufY (u)

)

+
α2L(Cs+D)

1− α

(
N∑
t=0

p(t|s, a)−
N∑
t=0

p(t|s, a)FY (N − s)

)
. (44)

As N → ∞, µ
∑N

t=0 p(t|s, a) converges to µ. Also, as N → ∞,
∑N

t=0 p(t|s, a)
∑N−s

u=0 ufY (u) con-
verges to µ as well. Therefore, the first big parenthesis in (44) converges to zero as N →∞. We can
also similarly show that the second big parenthesis in (44) converges to zero. Therefore, we proved
that the second term of δ̄(s, a,N) in (28) converges to zero as N →∞, and thus, δ̄(s, a,N)→ 0 as
N →∞.

Lastly, we illustrate that we can compute δ̄(s, a,N) finitely. Clearly, we can compute h(s,N)
finitely. To show that g(s,N) can be computed finitely, we only have to show that FY (U) can be
computed finitely for any nonnegative integer U . For any U ,

FY (U) =
U∑
u=0

P{Y = u} =
U∑
u=0

∞∑
n=1

(1−α)αn−1 e
−na1max(na1

max)u

u!
=

U∑
u=0

(1− α)(a1
max)u

α(u!)

∞∑
n=1

nu(αe−a
1
max)n.

Thus, in order to show that FY (U) can be computed finitely, it suffices to show that Bu ,∑∞
n=1 n

uζn can be computed finitely for any ζ ∈ (0, 1) and nonnegative integer u. Clearly, B0

can be computed finitely. Suppose that B0, B1, . . . , Bu−1 can be computed finitely. Then,

(1− ζ)Bu =
∞∑
n=1

nuζn −
∞∑
n=1

nuζn+1 =
∞∑
n=1

nuζn −
∞∑
n=1

(n− 1)uζn =
∞∑
n=1

[nu − (n− 1)u]ζn

=
∞∑
n=1

(
u−1∑
l=0

(
u

l

)
nl(−1)u−l+1

)
ζn =

u−1∑
l=0

(
u

l

)
(−1)u−l+1

∞∑
n=1

nlζn =
u−1∑
l=0

(
u

l

)
(−1)u−l+1Bl,

where the sum exchange is justified by the fact that Bl is finite for l = 0, 1, . . . , u − 1. Thus,
Bu can be computed finitely. By induction, Bu can be computed finitely for ζ ∈ (0, 1) and any
nonnegative integer u, and therefore, g(s,N) can be computed finitely. This implies that we can
compute δ̄(s, a,N) finitely.

36

